01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
↳ QTRS
↳ DependencyPairsProof
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
LOG'1(11(x)) -> +12(log'1(x), 11(#))
-12(01(x), 11(y)) -> -12(-2(x, y), 11(#))
LOG'1(01(x)) -> LOG'1(x)
-12(11(x), 11(y)) -> 011(-2(x, y))
GE2(01(x), 11(y)) -> GE2(y, x)
GE2(11(x), 01(y)) -> GE2(x, y)
+12(11(x), 11(y)) -> 011(+2(+2(x, y), 11(#)))
+12(01(x), 01(y)) -> +12(x, y)
-12(01(x), 01(y)) -> 011(-2(x, y))
LOG1(x) -> LOG'1(x)
-12(01(x), 11(y)) -> -12(x, y)
-12(11(x), 01(y)) -> -12(x, y)
+12(+2(x, y), z) -> +12(y, z)
+12(01(x), 01(y)) -> 011(+2(x, y))
LOG'1(11(x)) -> LOG'1(x)
LOG1(x) -> -12(log'1(x), 11(#))
LOG'1(01(x)) -> GE2(x, 11(#))
GE2(11(x), 11(y)) -> GE2(x, y)
+12(11(x), 11(y)) -> +12(x, y)
-12(01(x), 01(y)) -> -12(x, y)
GE2(01(x), 11(y)) -> NOT1(ge2(y, x))
+12(+2(x, y), z) -> +12(x, +2(y, z))
LOG'1(01(x)) -> +12(log'1(x), 11(#))
LOG'1(01(x)) -> IF3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
GE2(#, 01(x)) -> GE2(#, x)
GE2(01(x), 01(y)) -> GE2(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
-12(11(x), 11(y)) -> -12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
LOG'1(11(x)) -> +12(log'1(x), 11(#))
-12(01(x), 11(y)) -> -12(-2(x, y), 11(#))
LOG'1(01(x)) -> LOG'1(x)
-12(11(x), 11(y)) -> 011(-2(x, y))
GE2(01(x), 11(y)) -> GE2(y, x)
GE2(11(x), 01(y)) -> GE2(x, y)
+12(11(x), 11(y)) -> 011(+2(+2(x, y), 11(#)))
+12(01(x), 01(y)) -> +12(x, y)
-12(01(x), 01(y)) -> 011(-2(x, y))
LOG1(x) -> LOG'1(x)
-12(01(x), 11(y)) -> -12(x, y)
-12(11(x), 01(y)) -> -12(x, y)
+12(+2(x, y), z) -> +12(y, z)
+12(01(x), 01(y)) -> 011(+2(x, y))
LOG'1(11(x)) -> LOG'1(x)
LOG1(x) -> -12(log'1(x), 11(#))
LOG'1(01(x)) -> GE2(x, 11(#))
GE2(11(x), 11(y)) -> GE2(x, y)
+12(11(x), 11(y)) -> +12(x, y)
-12(01(x), 01(y)) -> -12(x, y)
GE2(01(x), 11(y)) -> NOT1(ge2(y, x))
+12(+2(x, y), z) -> +12(x, +2(y, z))
LOG'1(01(x)) -> +12(log'1(x), 11(#))
LOG'1(01(x)) -> IF3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
GE2(#, 01(x)) -> GE2(#, x)
GE2(01(x), 01(y)) -> GE2(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
-12(11(x), 11(y)) -> -12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
GE2(#, 01(x)) -> GE2(#, x)
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE2(#, 01(x)) -> GE2(#, x)
POL( GE2(x1, x2) ) = max{0, x2 - 1}
POL( 01(x1) ) = x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
GE2(11(x), 11(y)) -> GE2(x, y)
GE2(01(x), 01(y)) -> GE2(x, y)
GE2(11(x), 01(y)) -> GE2(x, y)
GE2(01(x), 11(y)) -> GE2(y, x)
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE2(11(x), 11(y)) -> GE2(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
GE2(01(x), 01(y)) -> GE2(x, y)
GE2(11(x), 01(y)) -> GE2(x, y)
GE2(01(x), 11(y)) -> GE2(y, x)
POL( GE2(x1, x2) ) = max{0, x1 + x2 - 2}
POL( 11(x1) ) = x1 + 2
POL( 01(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
GE2(01(x), 01(y)) -> GE2(x, y)
GE2(01(x), 11(y)) -> GE2(y, x)
GE2(11(x), 01(y)) -> GE2(x, y)
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE2(01(x), 01(y)) -> GE2(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
GE2(01(x), 11(y)) -> GE2(y, x)
GE2(11(x), 01(y)) -> GE2(x, y)
POL( GE2(x1, x2) ) = max{0, x1 + x2 - 2}
POL( 01(x1) ) = x1 + 2
POL( 11(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
GE2(11(x), 01(y)) -> GE2(x, y)
GE2(01(x), 11(y)) -> GE2(y, x)
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE2(11(x), 01(y)) -> GE2(x, y)
GE2(01(x), 11(y)) -> GE2(y, x)
POL( GE2(x1, x2) ) = max{0, x1 + x2 - 2}
POL( 11(x1) ) = x1 + 1
POL( 01(x1) ) = x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
-12(11(x), 01(y)) -> -12(x, y)
-12(01(x), 11(y)) -> -12(x, y)
-12(01(x), 01(y)) -> -12(x, y)
-12(01(x), 11(y)) -> -12(-2(x, y), 11(#))
-12(11(x), 11(y)) -> -12(x, y)
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(11(x), 01(y)) -> -12(x, y)
-12(01(x), 01(y)) -> -12(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
-12(01(x), 11(y)) -> -12(x, y)
-12(01(x), 11(y)) -> -12(-2(x, y), 11(#))
-12(11(x), 11(y)) -> -12(x, y)
POL( -12(x1, x2) ) = max{0, x2 - 1}
POL( 01(x1) ) = x1 + 2
POL( 11(x1) ) = x1
POL( # ) = 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
-12(01(x), 11(y)) -> -12(x, y)
-12(01(x), 11(y)) -> -12(-2(x, y), 11(#))
-12(11(x), 11(y)) -> -12(x, y)
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(01(x), 11(y)) -> -12(x, y)
-12(11(x), 11(y)) -> -12(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
-12(01(x), 11(y)) -> -12(-2(x, y), 11(#))
POL( -12(x1, x2) ) = max{0, x2 - 1}
POL( 11(x1) ) = x1 + 2
POL( # ) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
-12(01(x), 11(y)) -> -12(-2(x, y), 11(#))
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(01(x), 11(y)) -> -12(-2(x, y), 11(#))
POL( -12(x1, x2) ) = max{0, x1 - 1}
POL( 01(x1) ) = x1 + 2
POL( -2(x1, x2) ) = x1
POL( 11(x1) ) = x1 + 2
POL( # ) = 0
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(x, #) -> x
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(#, x) -> #
01(#) -> #
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(x, y)
+12(+2(x, y), z) -> +12(y, z)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(+2(x, y), z) -> +12(x, +2(y, z))
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
Used ordering: Polynomial Order [17,21] with Interpretation:
+12(+2(x, y), z) -> +12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
POL( +12(x1, x2) ) = max{0, x1 + x2 - 1}
POL( 01(x1) ) = x1 + 1
POL( 11(x1) ) = x1 + 2
POL( +2(x1, x2) ) = x1 + x2 + 1
POL( # ) = 0
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
01(#) -> #
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(#, x) -> x
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(x, #) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(+2(x, y), z) -> +12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(+2(x, y), z) -> +12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
POL( +12(x1, x2) ) = max{0, x1 - 1}
POL( +2(x1, x2) ) = x1 + x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
LOG'1(11(x)) -> LOG'1(x)
LOG'1(01(x)) -> LOG'1(x)
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LOG'1(11(x)) -> LOG'1(x)
Used ordering: Polynomial Order [17,21] with Interpretation:
LOG'1(01(x)) -> LOG'1(x)
POL( LOG'1(x1) ) = max{0, x1 - 1}
POL( 11(x1) ) = x1 + 2
POL( 01(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
LOG'1(01(x)) -> LOG'1(x)
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LOG'1(01(x)) -> LOG'1(x)
POL( LOG'1(x1) ) = max{0, x1 - 1}
POL( 01(x1) ) = x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
-2(#, x) -> #
-2(x, #) -> x
-2(01(x), 01(y)) -> 01(-2(x, y))
-2(01(x), 11(y)) -> 11(-2(-2(x, y), 11(#)))
-2(11(x), 01(y)) -> 11(-2(x, y))
-2(11(x), 11(y)) -> 01(-2(x, y))
not1(true) -> false
not1(false) -> true
if3(true, x, y) -> x
if3(false, x, y) -> y
ge2(01(x), 01(y)) -> ge2(x, y)
ge2(01(x), 11(y)) -> not1(ge2(y, x))
ge2(11(x), 01(y)) -> ge2(x, y)
ge2(11(x), 11(y)) -> ge2(x, y)
ge2(x, #) -> true
ge2(#, 01(x)) -> ge2(#, x)
ge2(#, 11(x)) -> false
log1(x) -> -2(log'1(x), 11(#))
log'1(#) -> #
log'1(11(x)) -> +2(log'1(x), 11(#))
log'1(01(x)) -> if3(ge2(x, 11(#)), +2(log'1(x), 11(#)), #)